China’s Energy Future

How economic rebalancing, environmental concerns, and policy reforms will accelerate change

Richard G. Newell
Director, Duke University Energy Initiative and Gendell Professor of Energy and Environmental Economics, Nicholas School of the Environment, Duke University

KAPSARC Workshop on ‘Reforming China’s Energy Economy’
November 12, 2015 | Riyadh, Saudi Arabia
Overview

• Historical growth in China’s energy consumption

• Future energy projections

• Key drivers of China’s energy future
 – Scale and structure of China’s economic growth
 – Local and global environmental concerns in China
 – Economic, energy, and environmental policy reforms
Historical growth in China’s energy consumption
China’s energy mix is evolving…

Data source: IEA World Statistics and Energy Balances
Fuel mix shifts as societies become wealthier

Data source: IEA via Paul J. Burke
…but mainly through addition rather than substitution

China primary energy consumption

Quadrillion Btu

Data source: IEA World Statistics and Energy Balances

Richard Newell, 11/12/2015, Riyadh
Regional energy consumption has been shifting east
1971

Country size scaled by share of global energy consumption

China’s GDP

0.4 trillion

China’s GDP in 1978 was $0.6 trillion.

Country size scaled by share of global energy consumption.

1990

China’s GDP

$1.6 trillion

Country size scaled by share of global energy consumption

2001

China’s GDP

$4.6 trillion

Country size scaled by share of global energy consumption

China’s GDP

$13.3 trillion

Country size scaled by share of global energy consumption

Future energy projections
Global energy consumption projections suggest wide variation in potential pathways.

Note: U.S. EIA and BP estimates omit non-marketed biomass.
China’s uncertain energy future comprises a significant part of this global uncertainty.

Note: U.S. EIA estimates omit non-marketed biomass.

China’s GDP

Country size scaled by share of projected global energy consumption

1971

China’s GDP

0.4 trillion

Country size is scaled by share of global energy consumption
Global energy flows shifting towards Asia

Source: Newell, Raimi, and Qian (forthcoming) derived from IEA 2014 World Energy Outlook, New Policies Scenario
Key drivers of China’s energy future
The Kaya Identity in China (growth rates add up)

$%P + \%G/P + \%E/G = \%E$

$\%E + \%C/E = \%C$

Scale and structure of China’s future economic growth
How quickly will China’s economy grow?

<table>
<thead>
<tr>
<th>Source</th>
<th>Real GDP growth rate (%) estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEA (GDP PPP)</td>
<td>6.7</td>
</tr>
<tr>
<td>IMF</td>
<td>6.8</td>
</tr>
<tr>
<td>World Bank</td>
<td>7.1</td>
</tr>
<tr>
<td>Economist IU</td>
<td>6.8</td>
</tr>
<tr>
<td>UN</td>
<td>6.9</td>
</tr>
<tr>
<td>OECD</td>
<td>7.3</td>
</tr>
</tbody>
</table>

- China’s Energy Research Institute assumes average annual GDP growth of 6% during 2020-2030
- Some economists predict much lower growth around 4%
The *structure* of China’s economic growth will also impact energy consumption

- How quickly will China transition from heavy industry, infrastructure investment, and manufacturing to a more service- and consumer-based economy?

![Diagram showing the percentage of value added to GDP by sectors over time.](image-url)

Data source: World Bank
Market-oriented policy changes could also accelerate change in China’s energy system

<table>
<thead>
<tr>
<th>Example market-oriented policy reforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening up fossil fuel assets to independent exploration</td>
</tr>
<tr>
<td>Reorganization of state-owned energy companies</td>
</tr>
<tr>
<td>Pricing deregulation</td>
</tr>
<tr>
<td>Expanded market mechanisms in the power sector</td>
</tr>
<tr>
<td>Liberalization of interest rates</td>
</tr>
<tr>
<td>Allowing Chinese to more easily buy foreign assets</td>
</tr>
</tbody>
</table>
Local and global environmental concerns in China
Air pollution drawing attention in China

Average daily PM$_{2.5}$ readings in Beijing

- Very Unhealthy to Hazardous
- Unhealthy
- Healthy to Moderate

winter peaks

Data source: U.S. State Department
Air quality has been improved before in other large cities

Daily max ozone concentrations in Los Angeles

Data source: U.S. EPA

Very Unhealthy to Hazardous
Unhealthy
Healthy to Moderate
Efforts to reduce CO$_2$ emissions are likely to further accelerate change in energy

Data source: IEA World Statistics
Energy and environmental policy reforms in China
2050 cost-effective CO₂ mitigation opportunities in China

- Total fuel switching in industry: 11%
- Reduced Transport Demand: 0.3%
- Reduced GDP: 3%
- Industrial Efficiency: 18%
- Building Efficiency: 6%
- Grid Efficiency: 0.4%
- CCS Coal: 11%
- CCS Gas: 11%
- Natural Gas: 4%
- Nuclear: 12%
- Renewable (excl. biofuels): 1%
- Biomass Power: 3%
- Solar: 7%
- Wind: 8%
- Hydro: 2%
- Energy Efficiency: 30%
- End-Use Sector: 16%

Data source: Analysis based on AMPERE results

Richard Newell, 11/12/2015, Riyadh
China has launched policy goals and reforms to transform its energy system and reduce CO$_2$.

Existing policy initiatives

- 40-45% reduction in CO$_2$/GDP by 2020
- 15% share of non-fossil energy by 2020
- Carbon-trading pilots in 7 regions
- Low-carbon development pilots in 42 municipalities
- Energy efficiency measures by industry and energy sector
- Renewable energy supports
- Concerted reforestation efforts (+40 million hectares by 2020)

2014 status relative to 2005

- 34% reduction in CO$_2$/GDP
- 90 times more installed wind capacity
- 400 times more installed solar capacity
- Three times more hydro and nuclear capacity
- Forest stock expansion (21 million hectares; 1.3 billion m3)

Source: *Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions*, submitted June 2015 as part of the UNFCCC
China’s INDC identifies key targets and policies and measures for achieving them

<table>
<thead>
<tr>
<th>2030 targets relative to 2005 levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak CO\textsubscript{2} emissions around 2030; best efforts to peak early</td>
</tr>
<tr>
<td>Reduce CO\textsubscript{2}/GDP by 60-65%</td>
</tr>
<tr>
<td>Increase non-fossil share of primary energy to around 20%</td>
</tr>
<tr>
<td>Increase forest stock by around 4.5 billion m3</td>
</tr>
</tbody>
</table>

- Commitment also to launch national carbon trading program in 2017

Source: Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions, submitted June 2015 as part of the UNFCCC
China’s INDC 2030 goals require new non-fossil electricity capacity equivalent to total U.S. capacity today

China Non-Fossil Capacity Growth, with Estimated Additions by 2030

Sources: Bloomberg New Energy Finance; White House
Note: Marine, Solar Thermal Electric Generation and Geothermal have been excluded from this graph due to their relatively small historic values

http://bit.ly/1emydFk
China’s uncertain energy future has important implications for CO₂ emissions.

China coal consumption: When will it peak and decline?

Coal consumption

(billion metric tonnes)

China oil consumption: Possible pathways

Oil consumption (million barrels per day of oil equivalent)

- IEA Historical
- IEA Current Policies
- IEA New Policies
- IEA 450
- U.S. EIA

History vs. Projections

China natural gas consumption projected to rise 3-4 fold

China nuclear plants to rise from 29 to hundreds

China hydro projected to rise by >50%

Conclusions

• China experiencing rapid growth in energy consumption since ~2000

• The link between economic growth and energy is weakening, but growth is still a key driver

• Economic rebalancing will further reduce overall energy intensity

• Environmental concerns are spurring action in the energy sector

• There are a wide range of options in play for China’s policymakers to accelerate change in its energy systems
For more information

Richard Newell

Duke University Energy Initiative

energy.duke.edu

richard.newell@duke.edu

+1-919-681-8663